В чем заключается принцип суперпозиции физических полей. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей. Как формулируется принцип суперпозиции полей
Главная » Расчет » В чем заключается принцип суперпозиции физических полей. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей. Как формулируется принцип суперпозиции полей

В чем заключается принцип суперпозиции физических полей. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей. Как формулируется принцип суперпозиции полей

Взаимодействие электрических зарядов осуществляется через особый вид материи, порождаемой заряженными частицами - электрическое поле . Электрические заряды изменяют свойства окружающего их пространства. Проявляется это в том, что на помещенный вблизи заряженного тела другой заряд (назовем его пробным ) действует сила (рис. 2). По величине этой силы можно судить об «интенсивности» поля, созданного зарядом q . Для того, чтобы сила, действующая на пробный заряд, характеризовала электрическое поле именно в данной точке пространства, пробный заряд, очевидно, должен быть точечным .

Рисунок 2

Поместив пробный заряд q пр на некотором расстоянии r от заряда q (рис. 2), мы обнаружим, что на него действует сила, величина которой зависит от величины взятого пробного заряда q пр .

Л
егко, однако, видеть, что для всех пробных зарядов отношениеF / q пр будет одно и тоже и зависит лишь от величин q и r , определяющих поле заряда q в данной точке r . Естественно, поэтому, принять это отношение за величину, характеризующую «интенсивность» или, как говорят, напряженность электрического поля (в данном случае поля точечного заряда ):


.

Таким образом, напряженность электрического поля является его силовой характеристикой . Численно она равна силе, действующий на пробный заряд q пр = +1, помещенный в данное поле.

Напряженность поля – вектор . Его направление совпадает с направлением вектора силы , действующей на точечный заряд, помещенный в это поле. Следовательно, если в электрическое поле напряженностью поместить точечный зарядq , то на него будет действовать сила:

Размерность напряженности электрического поля в СИ:
.

Электрическое поле удобно изображать с помощью силовых линий . Силовая линия – линия, вектор касательной к которой в каждой точке совпадает с направлением вектора напряженности электрического поля в этой точке. Принято считать, что силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность) и нигде не прерываются.

Электрическое поле подчиняется принципу суперпозиции (сложения), который можно сформулировать следующим образом: напряженность электрического поля, созданного в некоторой точке пространства системой зарядов, равна векторной сумме напряженностей электрических полей, созданных в этой же точке пространства каждым из зарядов в отдельности:

.

    1. Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.

Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной . Напомним, что центральной называется сила, линия действия которой направлена по радиус-вектору, соединяющему некоторую неподвижную точку О (центр поля) с любой точкой траектории. Из «Механики» известно, что все центральные силы являются потенциальными . Работа этих сил не зависит от формы пути перемещения тела, на которое они действуют, и равна нулю по любому замкнутому контуру (пути перемещения). В применении к электростатическому полю:

.

То есть, работа сил поля по перемещению заряда q из точки 1 в точку 2 равна по величине и противоположна по знаку работе по перемещению заряда из точки 2 в точку 1, независимо формы пути перемещения. Следовательно, работа сил поля по перемещению заряда может быть представлена разностью потенциальных энергий заряда в начальной и конечной точках пути перемещения:

.

Введем потенциал электростатического поля φ , задав его как отношение:


, (размерность в СИ:
).

Тогда работа сил поля по перемещению точечного заряда q из точки 1 в точку 2 будет:

Разность потенциалов
называется электрическим напряжением. Размерность напряжения, как и потенциала, [U] = B.

Считается, что на бесконечности электрические поля отсутствуют, и значит
. Это позволяет датьопределение потенциала как работы, которую нужно совершить, чтобы переместить заряд q = +1 из бесконечности в данную точку пространства. Таким образом, потенциал электрического поля является его энергетической характеристикой.

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Напряженность электрического поля. Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.

Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядом Согласно закону Кулона (8.2) на заряд действует сила, пропорциональная заряду Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от юряда и может рассматриваться как характеристика поля. Эту характеристику называют напряженностью электрического поля. Подобно силе, напряженность поля векторная

величина. Ее обозначают буквой Е. Если помещенный в поле заряд обозначить через вместо то, по опрелсленню, напряженность равна:

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.

Отсюда сила, действующая на заряд со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

Напряженность поля точечного заряда. Найдем напряженность электрического ноля, создаваемого точечным зарядом По закону Кулона этот заряд будет действовать на другой заряд с силой, равной:

Модуль напряженности поля точечного заряда на расстоянии от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд, от заряда, если и к заряду, если (рис. 100).

Принцип суперпозиции полей. Если на тело действуют несколько сил, то согласно законам механики результирующая сила равна геометрической сумме сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически, так как согласно (8.9) напряженности прямо пропорциональны силам.

Основная задача электростатики формулируется следующим образом: по заданному распределению в пространстве источников поля - электрических зарядов - найти значение вектора напряжённости во всех точках поля. Эта задача может быть решена на основе принципа суперпозиции электрических полей.

Напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Заряды могут быть распределены в пространстве либо дискретно, либо непрерывно. В первом случае напряжённость поля для системы точечных зарядов

где - напряжённость поля i -го заряда системы в рассматриваемой точке пространства, n - общее число дискретных зарядов системы.

Если электрические заряды непрерывно распределены вдоль линии, то вводится линейная плотность зарядов t , Кл/м.

t = (dq/dl),

где dq - заряд малого участка длиной dl .

Если электрические заряды непрерывно распределены по поверхности, то вводится поверхностная плотность зарядов s , Кл/м 2 .

s = (dq/dS ),

где dq - заряд, расположенный на малом участке поверхности площадью dS .

При непрерывном распределении зарядов в каком-либо объёме вводится объёмная плотность зарядов r , Кл/м 3 .

r = (dq/dV),

где dq - заряд, находящийся в малом элементе объёма dV .

Согласно принципу суперпозиции напряжённость электростатического поля, создаваемого в вакууме непрерывно распределёнными зарядами:

где - напряжённость электростатического поля, создаваемого в вакууме малым зарядом dq , а интегрирование проводится по всем непрерывно распределённым зарядам.

Рассмотрим применение принципа суперпозиции к электрическому диполю.

Электрическим диполем называется система из двух равных по абсолютной величине и противоположных по знаку электрических зарядов (q и –q ), расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля. Вектор , направленный по оси диполя от отрицательного заряда к положительному, называется плечом диполя. Вектор называется электрическим моментом диполя (дипольным электрическим моментом). Напряжённость поля диполя в произвольной точке , где и - напряжённости полей зарядов q и -q (рис. 1.2).

В точке А, расположенной на оси диполя на расстоянии r от его центра (r>>l ), напряжённость поля диполя в вакууме:

В точке В, расположенной на перпендикуляре, восстановленном к оси диполя из его середины, на расстоянии r от центра (r>>l ):

В произвольной точке С модуль вектора напряженности

где r - величина радиуса-вектора, проведенного от центра диполя к точке С; a - угол между радиусом-вектором и дипольным моментом(рис. 1.2).



1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме

Элементарным потоком напряжённости электрического поля сквозь малый участок площадью dS поверхности, проведённой в поле, называется скалярная физическая величина

dN = = EdScos() = E n dS = EdS ^ ,

где - вектор напряжённости электрического поля на площадке dS , - единичный вектор, нормальный к площадке dS , -вектор площадки, Е n = Ecos() - проекция вектора на направление вектора , dS ^ = dScos() - площадь проекции элемента dS поверхности на плоскость, перпендикулярную вектору (рис. 1.3).

Теорема Гаусса

Поток напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность пропорционален алгебраической сумме электрических зарядов, охватываемых этой поверхностью:

где все векторы направлены вдоль внешнихнормалей к замкнутой поверхности интегрирования S , которую часто называют гауссовой поверхностью.

1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

где - напряжённость поля в месте нахождения заряда q . Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dW П и А 12 = - DW П = W П1 - W П2 ,

где W П1 и W П2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j , равная потенциальной энергии W П положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

Потенциал поля точечного заряда q в вакууме

Принцип суперпозиции для потенциала

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

Потенциал поля электрического диполя в точке С (рис. 1.2)

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А 12 , совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j 1 ) в точку 2 (потенциал j 2 ):

А 12 = q (j 1 - j 2).

Если j 2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Е х = , Е у = , Е z = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = E n .

1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей s >0) или к ней (если s < 0).

Для всех точек поля

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

Графики зависимостей Е и j от x приведены на рис. 1.6.

Принцип суперпозиции

Допустим, что у нас есть три точечных заряда. Эти заряды взаимодействуют. Можно провести эксперимент и измерить силы, которые действуют на каждый заряд. Для того чтобы найти суммарную силу, с которой на один заряд действует второй и третий, необходимо силы, с которыми действуют каждый из них сложить по правилу параллелограмма. Возникает вопрос, равна ли измеряемая сила, которая действует на каждый из зарядов, сумме сил со стороны двух других, если силы рассчитаны по закону Кулона. Исследования показали, что измеряемая сила равна сумме вычисляемых сил в соответствии с законом Кулона со стороны двух зарядов. Такой эмпирический результат выражается в виде утверждений:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Данное утверждение называется принципом суперпозиции. Этот принцип является одной из основ учения об электричестве. Он так же важен, как и закон Кулона. Его обобщение на случай множества зарядов очевидно. Если имеется несколько источников поля (количество зарядов N), то результирующую силу, действующую на пробный заряд q можно найти как:

\[\overrightarrow{F}=\sum\limits^N_{i=1}{\overrightarrow{F_{ia}}}\left(1\right),\]

где $\overrightarrow{F_{ia}}$ -- сила, с которой действует на заряд q заряд $q_i$ если остальные N-1 заряд отсутствуют.

Принцип суперпозиции (1) позволяет, используя закон взаимодействия между точечными зарядами, вычислить силу взаимодействия между зарядами, находящимися на теле конечных размеров. Для этого необходимо разбить каждый из зарядов на малые заряды dq, которые можно считать точечными, взять из попарно, вычислить силу взаимодействия и провести векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Принцип суперпозиции имеет полевую трактовку: напряженность поля двух точечных зарядов равна сумме напряженностей, которые создаются каждым из зарядов, при отсутствии другого.

В общем случае принцип суперпозиции относительно напряженностей можно записать так:

\[\overrightarrow{E}=\sum{\overrightarrow{E_i}}\left(2\right).\]

где ${\overrightarrow{E}}_i=\frac{1}{4\pi {\varepsilon }_0}\frac{q_i}{\varepsilon r^3_i}\overrightarrow{r_i}\ $- напряжённость i-го точечного заряда, $\overrightarrow{r_i}\ $- радиус-вектор, проведённый от i-го заряда в точку пространства. Выражение (1) означает, что напряженность поля любого числа точечных зарядов равна сумме напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Подтверждено инженерной практикой, что принцип суперпозиции соблюдается вплоть до очень больших напряженностей полей. Очень значительные напряженности имеют поля в атомах и ядрах (порядка ${10}^{11}-{10}^{17}\frac{B}{м}$), но и для них использовали принцип суперпозиции в расчетах энергетических уровней атомов и данные расчетов совпали с данными экспериментов с большой точностью. Однако надо отметить, что при очень малых расстояниях (порядка $\sim {10}^{-15}м$) и экстремально сильных полях принцип суперпозиции, возможно, не выполняется. Так, к примеру, на поверхности тяжелых ядер напряженности достигают порядка $\sim {10}^{22}\frac{В}{м}$ принцип суперпозиции выполняется, но при напряженности ${10}^{20}\frac{В}{м}$ возникают квантово -- механические нелинейности взаимодействия.

Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}-линейная\ плотность\ распределения\ заряда$), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma =\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Принцип суперпозиции в принципе позволяет определить $\overrightarrow{E}$ для любой точки пространства по известному пространственному распределению заряда.

Пример 1

Задание: Одинаковые точечные заряды q находятся в вершинах квадрата со стороной a. Определите, какая сила, действует на каждый заряд со стороны других трех зарядов.

Изобразим силы, действующие на один из зарядов в вершине квадрата (выбор не важен, так как заряды одинаковы) (рис.1). Результирующую силу, действующую на заряд $q_1$, запишем как:

\[\overrightarrow{F}={\overrightarrow{F}}_{12}+{\overrightarrow{F}}_{14}+{\overrightarrow{F}}_{13}\ \left(1.1\right).\]

Силы ${\overrightarrow{F}}_{12}$ и ${\overrightarrow{F}}_{14}$ равны по модулю и могут быть найдены как:

\[\left|{\overrightarrow{F}}_{12}\right|=\left|{\overrightarrow{F}}_{14}\right|=k\frac{q^2}{a^2}\ \left(1.2\right),\]

где $k=9 {10}^9\frac{Нм^2}{{Кл}^2}.$

Модуль силы ${\overrightarrow{F}}_{13}$ найдем, также по закону Кулона, зная, что диагональ квадрата равна:

следовательно, имеем:

\[\left|{\overrightarrow{F}}_{13}\right|=k\frac{q^2}{2a^2}\ \left(1.4\right)\]

Направим ось OX как указано на рис. 1, спроектируем уравнение (1.1), подставим полученные модули сил, получим:

Ответ: Сила, действующая на каждый из зарядов в вершинах квадрата равна: $F=\frac{kq^2}{a^2}\left(\frac{2\sqrt{2}+1}{2}\right).$

Пример 2

Задание: Электрический заряд равномерно распределен вдоль тонкой нити в равномерной линейной плотностью $\tau $. Найдите выражение для напряженности поля на расстоянии $а$ от конца нити на ее продолжении. Длина нити равна $l$.

Выделим на нити точечный заряд $dq$, запишем для него из закона Кулона выражение для напряженности электростатического поля:

В заданной точке все векторы напряженности направлены одинаково, вдоль оси Х, поэтому, имеем:

Так как заряд по условию задачи равномерно распределен по нити с линейной плотностью $\tau $, то можно записать следующее:

Подставим (2.4) в уравнение (2.1), проинтегрируем:

Ответ: Напряженность поля нити в указанной точке вычисляется по формуле: $E=\frac{k\tau l}{a(l+a)}.$



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта