Максимальное землетрясение по шкале рихтера. Что такое магнитуда землетрясений? Шкала Рихтера. Сейсмическая шкала в Европе
Главная » Расчет » Максимальное землетрясение по шкале рихтера. Что такое магнитуда землетрясений? Шкала Рихтера. Сейсмическая шкала в Европе

Максимальное землетрясение по шкале рихтера. Что такое магнитуда землетрясений? Шкала Рихтера. Сейсмическая шкала в Европе

В разных странах принято по-разному оценивать интенсивность землетрясения.

· В России и некоторых других странах принята 12-балльная шкала Медведева - Шпонхойера - Карника .

· В Европе - 12-балльная Европейская макросейсмическая шкала .

· В США - 12-балльная модифицированная шкала Меркалли .

· В Японии - 7-балльная шкала Японского метеорологического агентства .

  • 12-балльная шкала интенсивности землетрясений Медведева - Шпонхойера - Карника (MSK-64) была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СП 14.13330.2014 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».
Балл. Сила землетрясения Краткая характеристика
I. Не ощущается Не ощущается. Отмечается только сейсмическими приборами.
II. Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными
III. Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
IV. Интенсивное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
V. Довольно сильное Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
VI. Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
VII. Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
VIII. Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. Падают фабричные трубы.
IX. Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
X. Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
XI. Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов, разрушаются мосты.
XII. Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Изменяется рельеф. Ни одно сооружение не выдерживает.
  1. МЕХАНИЗМ ОЧАГА.

Выяснение причин землетрясений и объяснение их механизма - одна из важнейших задач сейсмологии. Общая картина происходящего представляется следующей.

В очаге происходят разрывы и интенсивные неупругие деформации среды, приводящие к землетрясению. Деформации в самом очаге носят необратимый характер, а в области, внешней к очагу, являются сплошными, упругими и преимущественно обратимыми. Именно в этой области распространяются сейсмические волны. Очаг может либо выходить на поверхность, как при некоторых сильных землетрясениях, либо находиться под ней, как во всех случаях слабых землетрясений.

(Рейда теория)

Ответ: а) Разрыв сплошной горных пород наступает в результате накопления упругих деформаций выше предела, которой может выдержать горная порода. Деформации возникающие при перемещении соседних блоков земной коры.

Б) перемещение блоков не происходит внезапно, они нарастают.

В) движение в момент землетрясения состоит из упругой отдачи-резкого смещения сторон разрыва в положение, в котором отсутствуют упругие деформации.

Г) Сейсмические волны возникают на поверхности разрыва.

Д) Энергия освобожденная во время землетрясений, до землетрясений была энергией упругой деформации горных пород.

  1. ЧАСТОТА И ГЕОГРАФИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ЗЕМЛЕТРЯСЕНИЙ.
  1. ХАРАКТЕРИСТИКА ОСНОВНЫХ СЕЙСМИЧЕСКИХ ЗОН.
  1. УПРУГИЕ ДЕФОРМАЦИИ и напряжения

Упругая деформация - деформация, исчезающая после прекращения действий на тело внешних сил. При этом тело принимает первоначальные размеры и форму.

Область физики, изучающая упругие деформации, называется теорией упругости.

При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.

Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.

Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.

Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.

Преде́л пропорциона́льности () - 1) Максимальная величина напряжения, при котором ещё выполняется закон Гука, то есть деформация тела прямо пропорциональна приложенной нагрузке (силе). Следует заметить, что во многих материалах нагружение до предела упругости вызывает обратимые (то есть упругие в общем-то) деформации, но непропорциональные напряжениям. Кроме того, эти деформации могут «запаздывать» за ростом нагрузки как при нагружении, так и при разгружении.

2) Напряжение, при котором отступление от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованный касательной к кривой "нагрузка-удлинение" в точке Pпц и осью нагрузки, увеличивается на 50% от своего первоначального значения на упругом участке.

Зако́н Гу́ка - утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком .

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональностисвязь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Землетрясение – это резкие импульсные сотрясения участков земной поверхности. Эти сотрясения могут быть вызваны разными причинами, что позволяет по происхождению землетрясения разделять на следующие главные группы:

  • тектонические, обусловленные высвобождением энергии, возникающей вследствие деформаций толщ горных пород;
  • вулканические, связанные с движением магмы, взрывом и обрушением вулканических аппаратов;
  • денудационные, связанные с поверхностными процессами (крупными обвалами, обрушением сводов карстовых полостей);
  • техногенные, связанные с деятельностью человека (добыча нефти и газа, ядерные взрывы и пр.).

Наиболее частыми и мощными являются землетрясения тектонического происхождения. Напряжения, вызванные тектоническими силами, накапливаются в течение некоторого времени. Затем, когда превышается предел прочности, происходит разрыв горных пород, сопровождающийся выделением энергии и деформацией в виде упругих колебаний (сейсмических волн). Область внутри Земли, где происходит образование разломов и возникновение сейсмических волн, называют очагом землетрясения ; очаг является областью зарождения землетрясения. Как правило, главному сейсмическому удару предшествуют предварительные более слабые точки – форшоки (англ. «fore» - впереди + «shock» - удар, толчок ), связанные с началом образовании разломов. Затем происходит главный сейсмический удар и следующие за ним афтершоки. Афтершоки – это подземные толчки, следующие за главным толчком из одной с ним очаговой области. Число афтершоков и продолжительность их возникновения возрастает с ростом энергии землетрясения, уменьшением глубины его очага и может достигать нескольких тысяч. Их образование связано с возникновением новых разломов в очаге. Таким образом, землетрясение обычно проявляется в виде группы сейсмических толчков, состоящей из форшоков, главного толчок (сильнейшего землетрясение в группе) и афтерошоков. Сила землетрясения определяется объёмом его очага: чем больше объём очага, тем сильнее землетрясение.

Условный центр очага землетрясения называют гипоцентром , или фокусом землетрясения. Его объём можно очертить по расположению гипоцентров афтершоков. Проекция гипоцентра на поверхность называется эпицентром землетрясения. Вблизи эпицентра колебания земной поверхности и связанные с ними разрушения проявляются с наибольшей силой. Территория, где землетрясение проявилось с максимальной силой, называется плейстосейстовой областью . По мере удаления от эпицентра интенсивность землетрясения и степень связанных с ним разрушений уменьшается. Условные линии, соединяющие территории с одинаковой интенсивностью землетрясения называются изосейстами . От очага землетрясения изосейсты вследствие разной плотности и типа грунтов расходятся в виде эллипсов или изогнутых линий.

По глубине гипоцентров землетрясения делятся на мелкофокусные (0-70 км от поверхности), среднефокуные (70-300 км) и глубокофокусные (300-700 км). Основанная часть землетрясений зарождается в очагах на глубине 10-30 км, т.е. относится к мелкофокусным.

Регистрация и измерение интенсивности землетрясений

Ежегодно на Земле регистрируется несколько сотен тысяч землетрясений, часть из них оказываются разрушительными, часть вообще не ощущается людьми. Интенсивность землетрясений может быть оценена с двух позиций: 1) внешнего эффекта землетрясения и 2) измерения физического параметра землетрясения – магнитуды.

Определение внешнего эффекта землетрясения основано на определении его интенсивности , представляющей собой меру величины сотрясения грунта. Она определяется степенью разрушения построек, характером изменения земной поверхности и ощущениями, которые испытывают люди во время землетрясений. Интенсивность землетрясений измеряется в баллах.

Разработано несколько шкал для определения интенсивности землетрясений. Первая из них была предложена в 1883-1884 гг. М. Росси и Ф. Форелем, интенсивность в соответствии с этой шкалой измерялась в интервале от 1 до 10 баллов. Позднее, в 1902 г. в США была разработана более совершенная 12-балльная шкала, получившая название шкалы Меркалли (по имени итальянского вулканолога). Этой шкалой, несколько видоизменённой, и в настоящее время широко пользуются сейсмологи США и ряда других стран. В нашей стране и некоторых европейских странах используется 12-балльная международная шкала интенсивности землетрясений (MSK-64), получившая название по первым буквам её авторов (Медведев –Шионхойер - Карник).

Шкала MSK-64 (с упрощениями)
Баллы Критерии
ОДИН БАЛЛ Людьми такое землетрясение не ощущается, за исключением единичных наблюдателей, находящихся в особо чувствительных местах и занимающих определенные положения. Толчки регистрируются только специальными сейсмографами.
ДВА БАЛЛА Землетрясение очень слабое. Колебание почвы ощущается немногими людьми, находящимися в покое, главным образом в самых верхних этажах зданий, расположенных в непосредственной близости от эпицентра.
ТРИ БАЛЛА Землетрясение слабое. Колебания ощущаются в помещениях, главным образом в верхних этажах высотных зданий. Во время этого землетрясения раскачиваются подвешенные предметы, особенно люстры, скрипят и приходят в движение раскрытые двери. Стоящие автомобили начинают слегка раскачиваться на рессорах. Некоторые люди способны оценить длительность сотрясения.
ЧЕТЫРЕ БАЛЛА Умеренное землетрясение. Оно ощущается многими людьми и особенно теми, кто находится в помещении. Лишь немногие люди могут почувствовать такое землетрясение на открытом воздухе, и только те, кто в данное время находится в покое. Некоторые люди ночью от такого землетрясения пробуждаются. В момент землетрясения раскачиваются подвешенные предметы, дребезжат стекла, хлопают двери, звенит посуда, трещат деревянные стены, карнизы и перекрытия. Заметно покачиваются на рессорах стоящие автомашины.
ПЯТЬ БАЛЛОВ Ощутимое землетрясение. Оно чувствуется всеми людьми, где бы они ни находились. Просыпаются все спящие. Двери раскачиваются на петлях и открываются самопроизвольно, стучат ставни, захлопываются и открываются окна. Жидкость в сосудах раскачивается и иногда переливается через край. Бьется часть посуды, трескаются оконные стекла, местами в штукатурке появляются трещины, опрокидывается мебель. Маятниковые часы останавливаются. Иногда раскачиваются телеграфные столбы, опорные мачты, деревья и все высокие предметы.
ШЕСТЬ БАЛЛОВ Сильное землетрясение. Ощущается всеми людьми. Многие люди в испуге покидают помещение. В момент колебания почвы и после них походка становится неустойчивой. Бьются окна и стеклянная посуда. Отдельные предметы падают со стола. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины на стенах в кирпичной кладке. Заметно сотрясаются деревья и кусты.
СЕМЬ БАЛЛОВ Очень сильное землетрясение. Люди с трудом удерживаются на ногах. В испуге инстинктивно выбегают из помещений. Дрожат подвешенные предметы. Ломается мебель. Многие здания получают сильные повреждения. Печные трубы обламываются на уровне крыш. Обваливается штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы и неукрепленные специально парапеты. Появляются значительные трещины в грунте. Происходят оползни и обвалы на каменистых и глинистых склонах. Самопроизвольно звонят колокола. В реках и открытых водоемах мутнеет вода. Из бассейнов вода выплескивается. Повреждаются бетонные оросительные каналы.
ВОСЕМЬ БАЛЛОВ Разрушительное землетрясение. Типовые здания получают значительные повреждения. Иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Покачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах.
ДЕВЯТЬ БАЛЛОВ Опустошительное землетрясение. От действия такого землетрясения возникает паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. На земной поверхности появляются значительные трещины.
ДЕСЯТЬ БАЛЛОВ Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты. Серьезные повреждения получают дамбы, насыпи и плотины. На земной поверхности появляются многочисленные трещины, некоторые из них имеют ширину около 1 м. Возникают большие провалы и крупные оползни. Вода выплескивается из каналов, русел рек и из озер. Приходят в движение песчаные и глинистые грунты на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются крупные ветви и стволы деревьев.
ОДИННАДЦАТЬ БАЛЛОВ Катастрофическое землетрясение. Сохраняются только немногие, особо прочные каменные здания. Разрушаются плотины, насыпи, мосты. На поверхности земли появляются широкие трещины, уходящие глубоко в недра. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. На склонах возникают крупные оползни.
ДВЕНАДЦАТЬ БАЛЛОВ Сильное катастрофическое землетрясение. Полное разрушение зданий и сооружений. До неузнаваемости изменяется ландшафт, смещаются скальные массивы, оползают склоны, возникают крупные провалы. Поверхность земли становится волнообразной. Образуются водопады, возникают новые озера, изменяются русла рек. Растительность и животные погибают под обвалами и осыпями. Обломки камней и предметов взметаются высоко в воздух.

В соответствии с этой шкалой землетрясения подразделяются на слабые - от 1 до 4 баллов, сильные - от 5 до 7 баллов и сильнейшие - более 8 баллов.

Оценка интенсивности землетрясений, хотя и опирается на качественную оценку эффекта землетрясения (воздействие землетрясения на поверхность), но не позволяет проводить математически точное определение параметров землетрясения.

В 1935 г. американским сейсмологом Ч. Рихтером была предложена более объективная шкала, основанная на измерении магнитуды (эта шкала впоследствии стала широко известна как шкала Рихтера). Магнитуда (от лат. «magnitudo» – величина ), согласно определению Ч. Рихтера и Б. Гуттенберга, это величина, представляющая собой десятичный логарифм максимальной амплитуды сейсмической волны (в тысячных долях миллиметра), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения .

Хотя в этом определении не уточняется, какие из существующих волн надо принимать в расчет, стало общепринятым измерять максимальную амплитуду продольных волн (для землетрясений, очаг которых располагается вблизи поверхности, обычно измеряется амплитуда поверхностных волн). В целом, магнитуда характеризует степень смещения частиц грунта при землетрясениях: чем больше амплитуда, тем значительнее смещение частиц.

Шкала Рихтера теоретически не имеет верхнего предела. Чувствительные приборы регистрируют толчки с магнитудой 1,2, в то время как люди начинают ощущать толчки только с магнитудой 3 или 4. Наиболее сильные землетрясения, происшедшие в историческое время, достигали магнитуды 8,9 (печально знаменитое землетрясение в Лиссабоне в 1755 г.).

Между интенсивностью землетрясения в эпицентре (I 0), которая выражается в баллах, и величиной магнитуды (М) существует зависимость, описываемая формулами

I 0 = 1,7М-2,2 и М = 0,6I 0 +1,2 .

Соотношение между балльностью и магнитудой зависит от расстояния между очагом и точкой регистрации на поверхности земли. Чем меньше глубина очага, тем больше интенсивность сотрясения на поверхности при одной и той же магнитуде.

Следовательно, землетрясения с одинаковой магнитудой могут вызывать разные разрушения на поверхности в зависимости от глубины очага.

Регистрация землетрясений проводится на сейсмических станциях с помощью специальных приборов – сейсмографов, записывающих даже малейшие колебания грунта. Запись колебаний называют сейсмограммой. Сейсмограммы должны регистрировать колебания грунта в двух взаимоперпендикулярных направлениях в горизонтальной плоскости и колебания в вертикальной плоскости, для чего в состав сейсмографов включены три записывающих устройства (сейсмометра). На основании определения разницы во времени регистрации разных типов сейсмических волн, и зная скорость их распространения, можно определить положение гипоцентра землетрясения. Точность таких определений достаточно высока, особенно с учётом того, что к сегодняшнему дню действует развитая международная сеть сейсмических станций.

Для характеристики землетрясений важное значение имеют также их энергия и ускорение при сотрясении грунта.

Энергия, выделяемая при землетрясении, может быть рассчитана исходя из значения магнитуды по формуле

log Е = 11,5 M , где Е – энергия, М – магнитуда.

Величина ускорения показывает, с какой скоростью происходит сотрясение грунта. Ускорения, получаемые грунтом, передаются сооружениям, которые начинают раскачиваться и разрушаться. Для измерения ускорения пользуются показаниями специальных приборов - акселерографов, которыми оснащены современные сейсмографы. Ускорения в горизонтальном направлении всегда больше, чем в вертикальном. Так, максимально высокие из зарегистрированных горизонтальных ускорений составляют 1,15g, а максимально высокие вертикальные - до 0,7g. Именно поэтому наиболее опасными считаются горизонтальные толчки.

Размещение сейсмически активных зон

Подавляющее большинство землетрясений приурочены к тектонически активным зонам земной коры, связанным с границами литосферных плит. Так высокосейсмичным районом является обрамление Тихого океана, где океаническая литосферная плита поддвигается под континентальные или более древние океанические плиты (процесс поддвига океанической плиты называют субдукцией). Зоны поддвига плиты и её погружения в мантию трассируется положением очагов землетрясений, фиксируемых до поверхности нижней мантии (граница 670 км, связанная с возрастанием плотности вещества) и иногда глубже. Эти зоны получили название сейсмофокальных зон Беньофа. Ещё одна область активной сейсмичности связана с Альпийско-Гималайским поясом, протягивающимся от Гибралтара до Бирмы. Этот грандиозный складчатый пояс образован в результате столкновения континентальных литосферных плит. В пределах этого пояса очаги землетрясений приурочены главным образом к земной коре (глубинам до 40-50 км) и не образуют выраженных сейсофокальных зон. Их образование связано с процессами скучивания и раскалывания на надвигающиеся друг на друга пластины толщ континентальной литосферы. Очаги землетрясений приурочены и к зонам раздвижения и раскалывания плит. Процесс раздвижения литосферных, сопровождающийся формированием новой океанической коры за счёт мантийных расплавов, активно протекает в зонах срединно-океанических хребтов. Растяжение континентальных литосферных плит (происходящее, например, в Восточной Африке или в районе озера Байкал).

1. Где и отчего происходят землетрясения

2. Сейсмические волны и их измерение

3. Измерение силы и воздействий землетрясений

Шкала магнитуд

Шкалы интенсивности

Шкала Медведева-Шпонхойера-Карника (MSK-64)

4. Происходящее при сильных землетрясениях

5. Причины землетрясений

6. Другие виды землетрясений

Вулканические землетрясения

Техногенные землетрясения

Обвальные землетрясения

Землетрясения искусственного характера

7. Наиболее разрушительные землетрясения

8. О прогнозе землетрясений

9. Типы экологических последствий и землетрясений и их характеристика

Землетрясения это подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Где и отчего происходят землетрясения

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Международная сеть наблюдений за землетрясениями регистрирует даже самые удаленные и маломощные из них.

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Физико-химические процессы, происходящие вну­три Земли, вызывают изменения физического со­стояния Земли, объема и других свойств вещества. Это приводит к накапливанию упругих напряже­ний в какой-либо области земного шара. Когда уп­ругие напряжения превысят предел прочности ве­щества, произойдет разрыв и перемещение больших масс земли, которое будет сопровождаться сотрясе­ниями большой силы. Вот это и вызывает сотрясе­ние Земли — землетрясение.


Землетрясением так же обычно называют любое колебание земной поверхности и недр, какими бы причинами оно не вызывалось - эндогенными или антропогенными и какова бы ни была его интенсивность.

Землетрясения происходят на Земле не повсеме­стно. Они концентрируются в сравнительно узких поясах, приуроченных в основном к высоким горам или глубоким океаническим желобам. Первый из них — Тихоокеанский — обрамляет Тихий океан;

второй — Средиземнотрансазиатский — простирает­ся от середины Атлантического океана через бас­сейн Средиземного моря, Гималаи, Восточную Азию вплоть до Тихого океана; наконец, Атланто-арктичёский пояс захватывает срединный Атлан­тический подводный хребет, Исландию, остров Ян-Майен и подводный хребет Ломоносова в Арктике и т. д.

Землетрясения происходят также в зоне афри­канских и азиатских впадин, таких, как Красное море, озера Танганьика и Ньяса в Африке, Иссык-Куль и Байкал в Азии.

Дело в том, что высочайшие горы или глубокие океанические желоба в геологическом масштабе яв­ляются молодыми образованьями, находящимися в процессе формирования. Земная кора в таких областях подвижна. Подавляющая часть землетрясений связана с процессами горообразования. Такие зем­летрясения называют тектоническими. Ученые со­ставили специальную карту, на которой показано, какой силы землетрясения бывают или могут быть в разных районах нашей страны: в Карпатах, в Крыму, на Кавказе и в Закавказье, в горах Пами­ра, Копет-Дага, Тянь-Шаня, Западной и Восточной Сибири, Прибайкалье, на Камчатке, Курильских островах и в Арктике .


Бывают еще и вулканические землетрясения. Лава и раскаленные газы, бурлящие в недрах вул­канов, давят на верхние слои Земли, как пары ки­пящей воды на крышку чайника. Вулканические землетрясения довольно слабы, но продолжаются долго: недели и даже месяцы. Замечены случаи, когда они возникают до извержения вулканов и служат предвестниками катастрофы.

Сотрясения земли могут быть также вызваны об­валами и большими оползнями. Это местные об­вальные землетрясения.

Как правило, сильные землетрясения сопровож­даются повторными толчками, мощность которых постепенно уменьшается.

При тектонических землетрясениях происходят разрывы или перемещения горных пород в каком-нибудь месте в глубине Земли, называемом очагом землетрясения или гипоцентром. Глубина его обычно достигает нескольких десятков километров, а в отдельных случаях и сотен километров. Уча­сток Земли, расположенный над очагом, где сила подземных толчков достигает наибольшей величи­ны, называется эпицентром.

Иногда нарушения в земной коре — трещины, сбросы — достигают поверхности Земли. В таких случаях мосты, дороги, сооружения оказываются разорванными и разрушенными. При землетрясении в Калифорнии в 1906 г. образовалась трещина про­тяженностью в 450 км. Участки дороги около тре­щины сместились на 5—6 м. Во время Гобийского землетрясения (Монголия) 4 декабря 1957 г. воз­никли трещины общей протяженностью 250 км. Вдоль них образовались уступы до 10 м. Бывает, что после землетрясения большие участки земли опу­скаются и заливаются водой, а в местах, где уступы пересекают реки, появляются водопады.

В мае 1960 г. на Тихоокеанском побережье Юж­ной Америки, в Республика Чили, произошло несколько очень сильных и много слабых землетрясений. Самое сильное из них, в 11—12 баллов, наблюдалось 22 мая: в течение 1—10 секунд было израсходова­но колоссальное количество энергии, таившейся в недрах Земли. Такой запас энергия Днепрогэс мог­ла бы выработать лишь за много лет.

Землетрясение произвело тяжелые разрушения на большой территории. Пострадало более полови­ны провинций Республика Чили , погибло не менее 10 тыс. чело­век, и более 2 млн. осталось без крова. Разрушения охватили Тихоокеанское побережье на протяжении более 1000 км. Были разрушены крупные города — Вальдивия, Пуэрто-Монт и др. В результате чилий­ских землетрясений начали действовать четырнад­цать вулканов.

Когда очаг землетрясения находится под мор­ским дном, на море могут возникнуть огромные волны — цунами, которые иногда приносят разру­шений больше, чем само землетрясение. Волны, вы­званные 22 мая 1960 г. чилийским землетрясением, распространились по Тихому океану и достигли че­рез сутки противоположных его берегов. В Японии высота их достигла 10 м. Прибрежная полоса была затоплена. Суда, находившиеся у берегов, были вы­брошены на сушу, а часть построек унесена в океан.

Крупная катастрофа, постигшая человечество, случилась также 28 марта 1964 г. у побережья по­луострова Аляска. Это сильнейшее землетрясение разрушило г. Анкоридж, расположенный в 100 км от эпицентра землетрясения. Почва была вспахана серией взрывов и оползней. Крупные разрывы и пе­ремещения по ним блоков земной коры дна залива вызвали огромные морские волны, достигающие у побережья США 9—10 м высоты. Эти волны со ско­ростью реактивного самолета прошли вдоль побе­режья Канады и США , сметая все на своем пути.


Как же часто на Земле происходят землетрясе­ния? Современные точные приборы фиксируют ежегодно более 100 тыс. землетрясений. Но люди ощущают около 10 тыс. землетрясений. Из них примерно 100 бывают разрушительными.

Оказывается, что сравнительно слабые землетря­сения излучают энергию упругих колебаний, рав­ную 1012 эрг, а самые сильные — до 10" эрг. При таком большом диапазоне практически удобнее пользоваться не величиной" энергии, а ее логариф­мом. На этом основана шкала, в которой энергети­ческий уровень самого слабого землетрясения (1012 эрг) принимают за ноль, а примерно в 100 раз более сильному соответствует единица; еще в 100 раз большему (в 10 000 раз большему по энергии, чем нулевое) соответствуют две единицы шкалы и т. д. Число в такой шкале называют магнитудой землетрясения и обозначают буквой М.

Таким образом, магнитуда землетрясения харак­теризует количество упругой энергии колебаний, выделяемых во все стороны очагом землетрясения. Эта величина" не зависит ни от глубины очага под земной поверхностью, ни от расстояния до пункта наблюдений. Например, магнитуда (М) Чилийского землетрясения 22 мая 1960 г. близка к 8,5, а Таш­кентского землетрясения 26 апреля 1966 г. — к 5,3.

Масштаб землетрясения и степень его воздействия на людей и природную среду (а также на рукотворные сооружения) можно определять разными показателями, а именно: величиной энергии, выделенной в очаге - магнитудой, силой колебаний и их воздействий на поверхности - интенсивностью в баллах, ускорениями, амплитудой колебаний, а также ущербом - социальным (людские потери) и материальным (экономические потери).


Максимально зарегистрированная магнитуда достигала значения М-8,9. Естественно, что высокоамплетудные землетрясения происходят очень редко -в отличии от средне- и маломагнитудных. Средняя частота землетрясений на земном шаре составляет:

Сила сотрясения, или сила проявления землетря­сения на земной поверхности, определяется балла­ми. Наиболее распространенной является 12-балль­ная шкала. Переход от неразрушительных к разру­шительным сотрясениям соответствует 7 баллам.


Сила проявления землетрясения на поверхности Земли в большей степени зависит от глубины оча­га: чем ближе очаг к поверхности Земли, тем сила землетрясения в эпицентре больше. Так, югослав­ское землетрясение в Скопле 26 июля 1963 г. с маг-нитудой на три-четыре единицы меньше, чем у чи­лийского землетрясения (энергия в сотни тысяч раз меньше), но с малой глубиной очага вызвало ката­строфические последствия. В городе 1000 жителей было убито и более 1/2 зданий разрушено. Разруше­ние на поверхности Земли зависит помимо энергии, выделившейся при.землетрясении, и глубины очага еще от качества грунтов. Наибольшие разрушения происходят на рыхлых, сырых и неустойчивых грунтах. Имеет значение и качество наземных по­строек.

Сейсмические волны и их измерение


Более 2000 пет назад в Китае был создан прибор, предупреждающий людей от наступающего землетрясения. Этот прибор имел форму лягушки, с овальным основанием и четырьмя, наклонными плоскостями, в которых были размещены металлические шарики. При наступлении землетрясения, колебания, вызванные сейсмическими волнами раскачивали прибор и шарики выпадали из своих гнезд на металлическую подставку. Это было предупреждение о приближающемся землетрясении. Таким образом,с первых дней появления науки сейсмологии, её задачей было предупреждение людей о приближающемся землетрясении, тем самым,обеспечение безопасности жизни людей от природных катастроф. Потребовалось 2000 лет, чтобы появилось печально известное решение международной конференции в Лондоне в 1996г., в котором говорится, что прогноз землетрясений не возможен. Это означает, что усилия тысячи ученых, посвятивших свою жизнь решению этой проблемы человечества и миллиарды долларов, истраченные на исследования, были напрасны? О том, что это решение принято «скептиками», как называют ученых, потерявших надежду найти положительный результат в исследовании конкретной проблемы, от отчаяния, было понятно, уже тогда, т.к. с июня 1995г. пресса более 20 стран мира сообщала о том, что Сахалинское землетрясение было спрогнозировано автором и МЧС России получило предупреждение из МЧС Армении,за три месяца до трагедии, когда исчез с лица Земли город Нефтегорск. В начале ХХ века, впервые были получены изменения отношения продольных (VP) и поперечных (VS) сейсмических волн в зоне развития очага сильных землетрясений. И это отношение стало первым предвестником землетрясений. Ученые во многих развитых странах мира начали проводить исследования, с целью создания технологии прогнозирования землетрясений, способной определять место (координаты широты и долготы очага), время (год, месяц, день) и силу (магнитуду) будущих землетрясений. В настоящее время известны более 300 предвестников землетрясений, которые так и не привели к решению этой проблемы и вопрос прогнозирования землетрясений оставался без ответа. В чем причина неудачи? По катастрофическим последствиям, которые приводят к огромному количеству жертв и разрушений, землетрясения являются наиболее опасными природными катастрофами. Количество жертв от землетрясений, в ХХ веке составило 1,4 миллиона (Осипов,2001), из которых около 1,0 –го миллиона жертв приходится на последние 30 лет. За первые 12 лет, XXI века, число погибших от землетрясений приближается к 1,0-му миллиону (около 800 000): Индонезия (о.Суматра, 2004)- около 300 000 ; Гаити –около 300 000; Япония (Фукусима)…Ежегодно происходят: 1 землетрясение – с магнитудой до 9; около 15 землетрясений - до 8; 140 - до 7; 900 - до 6; 8000 - до 5. В настоящее время эти цифры имеют тенденцию идти по нарастающей. Вопросом прогнозирования землетрясений занимались и занимаются ученые всех стран мира и на эти исследования были потрачены миллиарды долларов, однако землетрясения продолжают уничтожать города, людей, страны. В чем причина беспомощности ученых всех стран мира? Политиков и МЧС эти вопросы не интересуют, а Правительства обращаются к ним, когда происходит катастрофа и гибнут люди, города и страны. На Лондонской конференции в 1996г. многие специалисты пришли к выводу, что сейсмическое прогнозирование безнадежно. По результатам конференции было опубликовано:«Сейсмическое прогнозирование безнадежно? Полный пессимизм относительно возможности надежного прогноза землетрясений высказали некоторые геофизики на состоявшейся в ноябре 1996 г. в Лондоне международной конференции. Р.Геллер (R.Geller; Токийский университет) отметил, что, несмотря на затраченные международным сообществом ученых усилия и средства, не удалось за все последние десятилетия обнаружить ни одного достойного доверия признака надвигающегося сейсмического события (некоторым сигналам, находящимся на уровне шумов или даже ниже, придавалось излишнее значение). К такому мнению присоединился сейсмолог С.Кремпин (S.Crampin; Эдинбургский университет, Шотландия). Скептицизм специалистов усилился после того, как несколько греческих сейсмологов заявили, что им якобы удалось прогнозировать землетрясения по предшествующим вариациям магнитного поля Земли; в решительной критике их отчета указывалось на совершенно неопределенные сведения о месте и времени предстоящих толчков, об их интенсивности. Многие ученые теперь полагают, что землетрясения вообще относятся к числу критических явлений, которые возникают в системе, выведенной на грань неустойчивого равновесия. Предсказать конкретно, когда произойдет критическое явление, почти невозможно; по мнению сейсмолога И.Мейна (I.Main; Эдинбургский университет), построить прогноз землетрясения столь же сложно, как заранее установить, какая именно снежинка вызовет снежную лавину в горах. Однако, отнеся подземные толчки к разряду критических явлений, специалисты теперь могут внести новые поправки в строительные кодексы с учетом научных критериев сейсмостойкости сооружений (существующие правила в основном опираются на голую эмпирику). New Scientist. 1996. V.152. N 2056. P.10 (Великобритания)». Итак, в 1996г. международная конференция в Лондоне, опираясь на мнение Р.Геллера (Токийский Университет) и двух сотрудников Эдинбургского Университета, вынесла приговор более чем столетней работе ученых мира о невозможности заранее определить место, время и магнитуду будущего землетрясения. Видимо авторам этого проекта не было известно о том, что в 1995г., т.е. за один год до принятия Лондонского решения, автором этих строк, была разработана физическая модель, позволяющая теоретически рассчитывать параметры будущих землетрясений на планете: место(координаты широты и долготы), время (год, месяц и день) и силу (магнитуду) на неограниченное время вперед - методика краткосрочного прогнозирования землетрясений и других природных катастроф (Публикации: 1.Прогнозирование землетрясений. Монография. Повышение сейсмостойкости зданий и сооружений. Изд. «Айастан», Ереван, 1989,глава, 8.5, стр. 316. 2.Электромагнитная модель механизма возникновения очага землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(19),2000, 3. Закономерность связи сейсмических волн, испускаемых очагом землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(31),2000 4. Краткосрочный прогноз землетрясений и других природных катастроф. Монография.Санкт-Петербург,2000, стр. 135. 5. Earthquakes and natural disasters shorth-term prediction.Sankt-Peterburg. 2000, p. 128.) и по ней были рассчитаны и переданы в МЧС России (за три месяца до трагедии) параметры Сахалинского землетрясения (май,1995г.), после которого исчез с лица Земли г. Нефтегорск (публикации: «Комсомольская правда»,06.06.1995. Москва, Россия; «Сюкан Синчо», 07.07.1995,Токио,Япония; BBC,1995, Лондон,Великобритания; Турция, «Marmara»1995; Иран, «Alik»1995; США …более 20 стран). За прошедшие 17 лет, по этой методике были рассчитаны параметры (место, время и магнитуда) более 40 000 будущих землетрясений и других природных катастроф, с точностью до 95%, в том числе все, произошедшие за это время катастрофы Краткосрочный прогноз землетрясений инструментальными, а тем более, вероятностными методами исследований, которыми оперирует современная сейсмология, действительно не возможен. Поэтому, до сих пор, все усилия ученых в этом направлении сейсмологии, терпят неудачу. Чем отличаются исследования, проводимые в настоящее время от тех, которые применялись в 1996г.? Ни чем, только увеличилось количество и, возможно качество, применяемой аппаратуры. Поэтому рассчитывать на успех, в решении проблемы краткосрочного прогнозирования землетрясений «современными методами инструментальных исследований» не приходится. В этом вопросе Лондонская конференция принесла бы больше пользы, если бы в решении принятом на ней было добавлено; «современными методами инструментальных исследований». Краткосрочный прогноз землетрясений и других природных катастроф возможен и он существует. Прогнозировать будущие природные катастрофы с абсолютной точностью можно,на неограниченное время вперед Метод состоит из двух частей. 1. Проводится теоретический расчет места, времени и силы будущих землетрясений… 2. За месяц до расчитанного времени, сейсмостанции данной страны проводят исследования изменения параметров,указанного региона и уточняют теоретический расчет. Это позволит,за 3-4 дня, до землетрясения, точно указать место, время и силу будущего землетрясения. 3. Полученные точные данные будущего землетрясения, цунами… передаются Правительству, которое и принимет решение о безопасности жизни людей.

Землетрясение - это физическое колебание литосферы - твёрдой оболочки земной коры, которая находится в постоянном движении. Зачастую подобные явления происходят в горных районах. Именно там подземные породы продолжают формироваться, в результате чего кора Земли является особенно подвижной.

Причины бедствия

Причины землетрясений могут быть разными. Одна из них - это смещение и столкновение океанических или материковых плит. При таких явлениях поверхность Земли ощутимо вибрирует и нередко приводит к разрушениям строений. Такие землетрясения называются тектоническими. При них могут образовываться новые впадины или горы.

Вулканические землетрясения происходят по причине постоянного давления раскаленной лавы и всевозможных газов на земную кору. Такие землетрясения могут длиться неделями, зато массовых разрушений, как правило, не несут. Кроме того, подобное явление часто служит предпосылкой для извержения вулкана, последствия которого могут быть значительно опаснее для людей, чем само бедствие.

Есть ещё один вид землетрясений - обвальные, которые происходят по совсем иной причине. Грунтовые воды иногда образовывают подземные пустоты. Под натиском земной поверхности огромные участки Земли с грохотом обрушиваются вниз, вызывая небольшие колебания, ощутимые за многие километры от эпицентра.

Баллы землетрясений

Для определения силы землетрясения в основном прибегают либо к десяти-, либо к двенадцатибалльной шкале. 10-балльная шкала Рихтера определяет величину выбрасываемой энергии. 12-балльная система Медведева-Шпонхойера-Карника описывает воздействие колебаний на поверхность Земли.

Шкала Рихтера и 12-балльная шкала несопоставимы. Для примера: ученые два раза взрывают бомбу под землей. Одну на глубине 100 м, другую - на глубине 200 м. Затрачиваемая энергия одинакова, что приводит к одной и той же оценке по Рихтеру. Но последствие взрыва - смещение коры - имеет разную степень тяжести и по-разному воздействует на инфраструктуру.

Степень разрушений

Что такое землетрясение с точки зрения сейсмических приборов? Явление в один балл определяется лишь аппаратурой. 2 балла могут быть ощутимыми животными, а также, в редких случаях, особо чуткими людьми, находящимися на верхних этажах. 3 балла по ощущениям напоминают вибрацию здания от проезжающего мимо грузовика. 4-балльное землетрясение приводит к легкому дребезжанию стекол. При пяти баллах явление чувствуется всеми, причем неважно, где находится человек, на улице или в здании. Землетрясение в 6 баллов называют сильным. Оно многих приводит в ужас: люди выбегают на улицу, а на некоторых стенах домов образовываются тещины. 7-балльное приводит к трещинам почти всех домов. 8 баллов опрокидывают памятники архитектуры, фабричные трубы, вышки, а на почве появляются трещины. 9 баллов приводят к сильным повреждениям домов. Деревянные строения либо опрокидываются, либо сильно проседают. 10-балльные землетрясения приводят к трещинам в земле, толщиной до 1 метра. 11 баллов - это катастрофа. Рушатся каменные дома и мосты. Возникают оползни. 12 баллов не выдерживает ни одно строение. При такой катастрофе меняется рельеф Земли, происходит отклонение течения рек и возникновение водопадов.

Японское землетрясение

В Тихом океане в 373 км от столицы Японии, Токио, возник разрушительный подземный толчок. Произошло это 11 марта 2011 года в 14:46 по местному времени.

9-балльное землетрясение в Японии привело к массовым разрушениям. Цунами, обрушившееся на восточное побережье страны, затопило значительную часть береговой линии, уничтожая дома, яхты и автомобили. Высота волн достигала 30-40 м. Незамедлительная реакция людей, подготовленных к таким испытаниям, спасла им жизнь. Лишь те, кто вовремя покинул дома и оказался в безопасном месте, смогли избежать гибели.

Жертвы землетрясения в Японии

Без жертв, к сожалению, не обошлось. Великое землетрясение Восточной Японии - так официально стали называть это событие - унесло 16 000 жизней. 350 000 жителей Японии остались без крова, что привело к внутренней миграции. Многие населенные пункты были стерты с лица Земли, электричества не стало даже в крупных городах.

Землетрясение в Японии в корне изменило привычный уклад жизни населения и сильно подорвало экономику государства. Убытки, причиненные этим бедствием, власти определили в 300 млрд. долларов.

Что такое землетрясение с точки зрения жителя Японии? Это стихийное бедствие, которое удерживает страну в постоянном волнении. Нависшая угроза заставляет ученых изобретать более точные приборы для определения землетрясения и более прочные материалы для постройки зданий.

Пострадавший Непал

25 апреля 2015 года в 12:35 в средней части Непала произошло почти 8-балльное землетрясение, длившееся 20 секунд. Следующее произошло в 13:00. Повторные толчки длились вплоть до 12 мая. Причиной послужил геологический разлом на той линии, где Индостанская плита встречается с Евразийской. В результате этих толчков столица Непала Катманду сдвинулась к югу на три метра.

В скором времени вся земля узнала о разрушениях, которое принесло землетрясение в Непале. Камеры, установленные прямо на улице, зафиксировали момент толчков и их последствия.

26 районов страны, а также Бангладеш и Индия ощутили на себе, что такое землетрясение. Сообщения о пропавших людях и рухнувших зданиях поступают властям до сих пор. 8,5 тысячи непальцев потеряли жизнь, 17,5 тысячи получили ранения, а около 500 тысяч остались без места жительства.

Землетрясение в Непале вызвало настоящую панику среди населения. И неудивительно, ведь люди теряли своих родственников и видели, как быстро рушится то, что было дорого их сердцу. Но проблемы, как известно, объединяют, что было доказано жителями Непала, которые трудились бок о бок, восстанавливая прежний облик городских улиц.

Недавнее землетрясение

8 июня 2015 года на территории Кыргызстана произошло землетрясение магнитудой 5,2 балла. Это последнее землетрясение, которое превысило 5 баллов.

Говоря о страшном стихийном бедствии, нельзя не упомянуть землетрясение на острове Гаити, которое произошло 12 января 2010 года. Серия толчков от 5 до 7 баллов унесла 300 000 жизней. Мир еще долго будет помнить об этой и других похожих трагедиях.

В марте берега Панамы узнали силу землетрясения в 5,6 балла. В марте 2014 года Румыния и юго-запад Украины на своем опыте узнали, что такое землетрясение. К счастью, жертв не было, но волнение перед стихией испытали многие. За последнее время баллы землетрясений не переступали за грань катастрофы.

Частота землетрясений

Итак, движение земной коры имеет различные природные причины. Землетрясений, по оценкам сейсмологов, происходит до 500 000 ежегодно в разных частях Земли. Из них приблизительно 100 000 ощущается людьми, а 1000 причиняет серьезный ущерб: разрушает постройки, шоссейные и железные дороги, обрывает линии электропередач, иногда уносит под землю целые города.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта