Пластический обмен называют еще. Где происходит пластический и энергетический обмен? Что такое обмен энергетического типа? Что можно сказать об энергетическом обмене
Главная » Пол » Пластический обмен называют еще. Где происходит пластический и энергетический обмен? Что такое обмен энергетического типа? Что можно сказать об энергетическом обмене

Пластический обмен называют еще. Где происходит пластический и энергетический обмен? Что такое обмен энергетического типа? Что можно сказать об энергетическом обмене

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (анаболизм ) и энергетический обмены (катаболизм ), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Для отдельных процессов, происходящих в организмах, используются следующие термины:

Анаболизм (ассимиляция ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

Катаболизм (диссимиляция ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы , – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно ) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые.

Ферменты, их химическая природа, роль в метаболизме . Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и‑РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Чтобы максимально точно ответить на заданный вопрос рассмотрим понятия "пластический и энергетический обмен".

Понятия пластического и энергетического обмена

Эти два понятия вытекают из определения обмена веществ. Метаболизм или обмен веществ - это скорость химических соединений, которые ежедневно происходят в нашем организме. Обмен веществ состоит из двух компонентов: пластического и энергетического обмена. Рассмотрим подробнее эти два понятия:

  • Энергетический обмен - это обменный процесс, при котором происходит разделение питательных веществ до простейших соединений. Выделяют несколько этапов энергетического обмена.
  • Пластический обмен - это реакции, происходящие в организме, при которых синтезируется химические вещества из сложных в простые при помощи энергии. По-другому, пластический обмен именуется анаболизмом.

Стадии энергетического обмена

  • Подготовительная стадия. На данной стадии происходит в желудке человека, где белки под действием различного типа ферментов распадаются на простейшие аминокислоты, а углеводы - на моносахариды.
  • Анаэробная стадия. Расщепляются органические соединения до более простых и однородных веществ. Анаэробная стадия может протекать в организме, не включая в себя кислород. Данный этап протекает исключительно в цитоплазме.
  • Аэробная стадия должна происходит только при участии кислорода. На этой стадии промежуточные продукты обмена превращаются в переработанные продукты.

Заканчивается процесс энергетического обмена непосредственно в клетке, а именно в митохондриях.

Разновидности пластического обмена

Пластический обмен веществ, в отличие от энергетического процесса происходит только на клеточном уровне. Пластический обмен имеет три разновидности:

  • Фотосинтез (Обладают исключительно растения и бактерии).
  • Хемосинтез (Используются определёнными бактериями без участия кислорода).
  • Биосинтез белков (Происходит обмен белков в организме человека, которые впоследствии превращаются в аминокислоты).

Таким образом, пластический и энергетический обмен имеют связь между собой. Энергетический обмен проходит несколько этапов и преимущественно протекает в митохондриях. А пластический обмен происходит исключительно в клетках.

Энергетический обмен, или катабализм или диссимиляция, происходит в митохондриях. В ходе него высвобождается энергия в виде молекул АТФ и тепла, которое рассеивается по клетке/ организму. Данный процесс называется гликолизом, имеет 3 стадии. Подготовительную, бескислородную- матрикс митохондрий, из глюкозы образуется 2 молекулы АТФ и пировиноградная кислота. Кислородный этап-кристы тех же митохондрий. Пировиноградная кислота окисляется до кислорода и воды, образуется 36 молекул АТФ.

Пластический, ассимиляция или анаболизм, происходит в результате синтеза организмом веществ. В первую очередь белков. Происходит на рибосомах.

Пластический обмен носит еще название анаболизма или ассимиляции и является совокупностью всех ферментативных биохимических реакций, в результате которых синтезируются биоорганические соединения.

Пластический обмен включает биосинтез протеинов, липидов, углеводов, нуклеиновых кислот. При анаболизме проходит также процесс фотосинтеза и хемосинтеза.

Если говорить о пластическом обмене в организме человека, то сразу надо сказать, что все которые попадают в организм с пищей, имеют высокомолекулярный состав, поэтому не могут усваиваться. В процессе пищеварения данные соединения распадаются на отдельные мономеры, которые уже используются для синтеза специфических высокомолекулярных веществ, присущих человеческому организму.

Одним из самых важных классов соединений являются белки. Белковую природу имеют все ферменты организма, а также некоторые гормоны. Белками являются гемоглобин (обеспечивает дыхательную функцию), антитела (обеспечивают иммунный ответ организма), актин и миозин (предопределяют сокращение мышц), коллаген и кератин (выполняют структурную функцию в организме).

Учитывая важную роль белков для функционирования организма, стоит рассмотреть процесс их синтеза как важной части пластического обмена.

Надо сказать, что все живые организмы отличаются между собой наличием специфических протеинов, которые состоят из аминокислот. Именно взаиморасположение аминокислот определяет специфические свойства белковых соединений.

Белки синтезируются в клеточной цитоплазме на специальных органеллах - рибосомах. Данные структуры состоят из большой и малой субъединиц. Они принимают участие в процессах синтеза протеинов. Важную роль в биосинтезе белков играют нуклеиновые кислоты, к которым относится ДНК и РНК. Так, структурные единицы ДНК (гены) содержат закодированную информацию о первичной структуре белков (последовательность аминокислот), а РНК отвечает за ее считывание и транспорт аминокислот к месту, где идет синтез белка.

Синтез протеинов происходит в два этапа: транскрипция и трансляция. В основе транскрипции лежит процесс переноса информации о с ДНК на РНК.

Трансляция - синтез полипептидной цепи с соответствующей последовательностью аминокислот согласно при участии матричной (информационной) РНК. Весь процесс трансляции проходит три стадии: инициации, элонгации, терминанации. В результате трансляции образуется белок с первичной структурой.

Стоит вспомнить, что пластический обмен - это не только синтез белков или других но и фотосинтез, который является сложным и многоступенчатым процессом, он проходит в 2 фазы.

Световая фаза проходит в хлоропластах (на тилакоидах), при этом образуется АТФ и выделяется молекулярный кислород, а темновая фаза проходит в основном веществе хлоропластов и обуславливает поглощение углекислого газа и образование углеводов.

Думаю, не стоит останавливаться на роли фотосинтеза, достаточно сказать, что благодаря данному процессу ежегодно образуется около 150 млрд. т веществ органической природы, а также примерно 200 млрд. т кислорода.

Надо сказать, что пластический обмен тесно связан с энергетическими процессами, которые происходят в организме. Так, энергетический обмен (катаболизм) является противоположным процессом анаболизма и включает в себя все реакции расщепления, когда сложные соединения распадаются на простые, а высокомолекулярные вещества превращаются в ряд низкомолекулярных. При этом высвобождается энергия, которая используется в процессах пластического обмена.

Так, пластический и энергетический обмен в клетке составляют основу общего обмена - метаболизма, который включает все процессы синтеза и распада веществ.

ВСПОМНИТЕ

Обмен веществ - это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой.

Вопрос 2. Каковы особенности обмена веществ у животных?

Животные являются гетеротрофами и должны получать органические вещества из окружающей среды. Во время образования органических веществ из неорганических растения выделяют в окружающую среду кислород. Большинству животных этот кислород нужен для того, чтобы высвободить энергию, накопленную в органических веществах.

Вопрос 3. Какие белки являются неполноценными?

Неполноценные белки содержат недостаточное количество одной или нескольких аминокислот.

ВОПРОСЫ К ПАРАГРАФУ

Вопрос 1. Что такое обмен веществ?

Обмен веществ - обязательное условие жизни любого организма. Обмен веществ обеспечивает взаимодействие живого организма с окружающей его средой, процессы жизнедеятельности, рост, развитие.

Вопрос 2. Что представляют собой пластический и энергетический обмен и где они происходят?

Под пластическим обменом понимают такие процессы, в ходе которых в клетках создаются новые соединения и новые структуры, характерные для данного организма. Под энергетическим обменом понимают такие превращения энергии, в ходе которых в результате биологического окисления выделяется энергия, необходимая для жизнедеятельности клеток, тканей и всего организма в целом. Пластический и энергетический обмен происходит в клетках.

Вопрос 3. Какое значение для обмена веществ имеет АТФ?

АТФ является аккумулятором энергии. Если в клетках возникает потребность в энергии, то АТФ распадается. При этом выделяется энергия, за счёт которой и протекают различные процессы жизнедеятельности. Организм человека потребляет очень много энергии, так как работа мышц, почек, мозга и любых других систем требует постоянных её затрат.

Вопрос 4. Какие единицы используют для обозначения энергии, запасённой в питательных веществах, и каковы особенности их взаимного пересчёта?

Различные питательные вещества при окислении выделяют разное количество энергии, единицей измерения которой является джоуль (Дж).

Вопрос 5.Охарактеризуйте особенности обмена основных веществ в организме человека.

Обмен белков. Белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к отдельным клеткам организма, в которых и происходит синтез новых белков, свойственных человеку. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени аммиак превращается в мочевину. Вода и мочевина выводятся из организма в составе мочи, а углекислый газ выдыхается через лёгкие.

Обмен углеводов. В организм углеводы поступают в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Всасываются углеводы в виде глюкозы ворсинками тонкого кишечника и попадают в кровь.

Обмен жиров. Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи жиры перевариваются и всасываются в лимфатические капилляры ворсинок тонкого кишечника и далее с током лимфы попадают в кровь.

1. Изучив текст и содержание таблиц пара графа, подсчитайте, какое количество кило калорий вы получаете за день.

2. Составьте примерное меню, калорийность которого соответствовала бы вашим дневным нагрузкам.

Завтрак: Колбаса (100 г.) с рисом (150 г.) запеченная в яйце (50 г.) кусок хлеба (150 г.) с маслом (20 г.) чай с сахаром (10 г.)

Обед: Суп из картофеля (90 г.) с морковью (20 г) и луком (30 г.) курица (100 г.), запеченная с капустой (100 г.) в масле (5 г.) чай с сахаром (10 г.)

Полдник: Стакан молока (200 г.) и яблоко (200 г.)

Ужин: Рыба (100 г.) запечённая в масле (10г.) с луком (50 г.) жареный картофель (200 г.) чёрный хлеб (100 г.) чай с сахаром (10 г.)

ПОДУМАЙТЕ!

Как можно доказать, что энергия в организме человека видоизменяется?

Обмен веществ и энергии - это взаимосвязанные процессы, разделение которых связано лишь с удобством изучения. Ни один из этих процессов в отдельности не существует. При окислении энергия химических связей, содержащаяся в питательных веществах, освобождается и используется организмом. За счет перехода одних видов энергии в другие и поддерживаются все жизненные функции организма. При этом общее количество энергии не изменяется. Соотношение между количеством энергии, поступающей с пищей, и величиной энергетических затрат называется энергетическим балансом.

Сказанное можно проиллюстрировать на примере деятельности сердца. Сердце совершает огромную работу. Каждый час оно выбрасывает в аорту около 300 л крови. Эта работа совершается за счет сокращения сердечной мышцы, в которой при этом протекают интенсивные окислительные процессы. Благодаря освобождающейся энергии обеспечивается механическое сокращение мышц, и в конечном счете вся энергия переходит в тепловую, которая рассеивается в организме и отдается им в окружающее пространство. Аналогичные процессы идут в каждом органе человеческого тела. И в каждом случае в конечном итоге химическая, электрическая, механическая и другие виды энергии трансформируются в тепловую и рассеиваются во внешнюю среду.

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме:

1.анаболизм (ассимиляция, пластический обмен) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

2.катаболизм (диссимиляция, энергетический обмен) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Анаболизм и катаболизм связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления.

Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Живые существа для своей жизнедеятельности используют световую и химическую энергию.

Зеленые растения – автотрофы – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода.

Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами.

Особая группа организмов – миксотрофы – питаются смешанным способом – это растения росянка, венерина мухоловка (среди растений есть даже гетеротроф – раффлезия); а среди животных есть одноклеточное животное - эвглена зеленая.

Ферменты – это специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Иными словами, к активному центру фермента, имеющему сложное строение, как к замку, подходит только один или несколько «ключей» - расщепляющихся субстратов или ингибиторов.

Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами . В молекуле фермента есть активный центр (замок) , пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует (ключам) . Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции.

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта